Answer:
Angle D = m∠D= 50°
Step-by-step explanation:
In ΔCDE we are given: 3 angles
m∠C=(5x+18) ∘
m∠D=(3x+2) ∘
m∠E=(x+16) ∘ .
The sum of angles in a triangle = 180°
Hence:
m∠C + m∠D + m∠E = 180°
(5x+18)° + (3x+2)° + (x+16)° = 180°
5x + 18 + 3x + 2 + x + 16 = 180°
5x + 3x + x + 18 + 2 + 16 = 180°
9x +36= 180°
Subtract 36 from both sides
9x + 36 - 36 = 180° - 36°
9x = 144°
x = 144°/9
x = 16
From the above question, we are asked to find:angle D (m∠D )
Hence:
m∠D=(3x+2)°
m∠D=( 3 × 16 + 2)°
m∠D=(48 + 2)°
m∠D= 50°