Respuesta :
To Find :
The recombination frequency between these two mutations.
Solution :
Formula of calculating recombination frequency is :
[tex]R.F = \text{Number of mutations}\times \dfrac{\text{number of k plaques} \times D.F }{\text{Volume used}}\times \dfrac{Volume'}{\text{Number of B plaques} \times D.F' }}[/tex]
Putting all given values in above equation, we get :
[tex]R.F = \dfrac{2\times 400\times 0.2 \times 10^4}{16\times 0.1\times 10^8}\\\\R.F = 0.01[/tex]
Therefore, the recombination frequency between these two mutations is 0.01 or 1 %.
The recombination frequency between these two mutations will be "0.01".
Given:
- No. of mutation = 2
- Volume, [tex]V = 0.1[/tex]
[tex]V'= 0.2[/tex]
- k plaques = 400
The formula:
→ [tex]R.F = No. \ of \ mutations\times \frac{No. \ of \ k \ plaques\times D.F }{Volume}\times \frac{Volume'}{No. \ of \ B \ plaques\times D.F'}[/tex]
By putting the values in the above formula, we get
→ [tex]= \frac{2\times 400\times 0.2\times 10^4}{16\times 0.1\times 10^8}[/tex]
→ [tex]= \frac{160\times 10^4}{1.6\times 10^8}[/tex]
→ [tex]= 0.01[/tex]
Thus the solution above is the right approach.
Learn more about frequency here:
https://brainly.com/question/22387406