For doping silicon with boron, silicon specimen was kept in gaseous atmosphere containing B2O3 that maintained the B concentration at the surface of Si specimen at the level of 3*10^26 boron atoms/m^3. The process was carried out at 1100 degrees C. The diffusion coefficient of B in Si at 1100 degrees C is 4*10^-13 cm^2/s. Calculate the concentration of B at the depth of 10^-4 cm from the surface after 130 minutes of diffusion at 1100 degrees C

Respuesta :

Solution :

From Fick's law:

[tex]$\frac{D_{AB}}{\Delta z } \times (C_{A1}-C_{A2})=N_a$[/tex]

Mass balance: Exits = Accumulation

[tex]-N_A A = \frac{dm}{dt}[/tex]

[tex]-N_A A = \frac{dVp}{dt}[/tex]

[tex]-N_A A = \frac{dV}{dt}p[/tex]

[tex]-N_A A = \frac{dhA}{dt}[/tex]

[tex]-N_A A = \frac{dh}{dt} \times Ap[/tex]

From the last step, area cancels out and thus leaves :

[tex]-N_A = \frac{dh}{dt} \times p[/tex]

So now we can substitute the [tex]$N_A$[/tex] by the Fick's law

[tex]$\frac{D_{AB}}{\Delta z } \times (C_{A1}-C_{A2})=\frac{dh}{dt} p$[/tex]

Substituting the values we get

[tex]$=\frac{-4 \times 10^{-13}}{0.0001} \times (3 \times 10^{26} - C_{A2}) = \frac{dh}{dt} \times 2.46$[/tex]

[tex]$=-4 \times 10^{-9} \times( 3 \times 10^{26} - C_{A2}) = 0.0001 \times 2.46$[/tex]

[tex]$= -7800 \times 4 \times 10^{-9} \times (3 \times 10^{26}-C_{A2})=0.000246$[/tex][tex]$=-(3 \times 10^{26}-C_{A2}) = 7.8846 \times 100 \times \frac{1}{69.62} \times 6.022 \times 10^{23}$[/tex]

[tex]$C_{A2} = 6.85 \times 10^{28} \ \text{ boron atoms} /m^3$[/tex]