Respuesta :

Answer:

Step-by-step explanation:

1). g(x) = -0.5x

   Equation form of the given function is,

   y = -0.5x

 Interchange x and y,

  x = -0.5y

  Solve for y,

  y = [tex]-\frac{x}{0.5}[/tex]

  y = -2x

  Inverse function will be,

  [tex]g^{-1}x=-2x[/tex]

2). h(x) = 4x

   Equation form of the function will be,

   y = 4x

   Interchange x and y,

   x = 4y

   Solve for y,

   y = [tex]\frac{x}{4}[/tex]

   Inverse function will be,

   [tex]h^{-1}(x)=0.25x[/tex]

3). y = x - 4

    Interchange x and y,

    x = y - 4

    Solve for y,

    y = x + 4

    Therefore, inverse of the linear equation is,

    y = x + 4

4). f(x) = [tex]\frac{x}{2}[/tex]

    Equation form of the function will be,

    y = [tex]\frac{x}{2}[/tex]= x

     Interchange x and y,  

     x = [tex]\frac{y}{2}[/tex]

    Solve for y,

     y = 2x

     Therefore, inverse function will be,

     [tex]f^{-1}(x)=2x[/tex]

5). k(x) = x

     Equation form of the function will be,

     y = x

     Interchange x and y,

     x = y

     Solve for y,

     y = x

     Inverse of the function 'f' will be,

     [tex]k^{-1}(x) =x[/tex]

6). p(x) = x + 4

     Equation form of the function will be,

     y = x + 4

     Interchange x and y,

     x = y + 4

     Solve for y,

     y = x - 4

     Inverse of the function 'p' will be,

     [tex]p^{-1}(x)=x - 4[/tex]