Respuesta :

Answer:

The equation of the parabola in standard is [tex]y=x^{2}+5x-1[/tex]

Step-by-step explanation:

The standard form equation of the parabola is:

[tex]y=ax^{2}+bx+c[/tex]

Using the three points we can find a, b and c.

Let's put the first point (0,-1)into the standard form equation.

[tex]-1=a(0)^{2}+b(0)+c[/tex]

[tex]c=-1[/tex]

Using the second point (1,5) and the value of c found above.

[tex]5=a(1)^{2}+b(1)+c[/tex]

[tex]5=a+b-1[/tex]

[tex]6=a+b[/tex] (1)

Finally using the las point (-1,-5)  

[tex]-5=a(-1)^{2}+b(-1)+c[/tex]

[tex]-5=a-b-1[/tex]

[tex]-4=a-b[/tex] (2)  

Solving the system of equations (1) and (2) we can find a and b.

[tex]6=a+b[/tex]

[tex]-4=a-b[/tex]

Adding both of them we have:

[tex]2=2a[/tex]

[tex]a=1[/tex]

And b = 5.

Therefore, the equation of the parabola in standard form will be.

[tex]y=x^{2}+5x-1[/tex]

I hope it helps you!