Respuesta :
Answer:
[tex]39.5,44.5[/tex]
Step-by-step explanation:
[tex]Let\ the\ lower\ limit\ and\ the\ upper\ limit\ of\ the\ first\ interval\ be\ u_1,v_1.\\Let\ the\ lower\ limit\ and\ the\ upper\ limit\ of\ the\ second\ interval\ be\ u_2,v_2.\\Let\ the\ lower\ limit\ and\ the\ upper\ limit\ of\ the\ third\ interval\ be\ u_3,v_3.\\Hence,\\As\ the\ class\ marks\ are\ uniform\ with\ an\ a\ difference\ of\ 5, the\\ observation\ is\ continuous\ and\ the\ class\ size\ is\ 5\ too.\\Hence,\\v_1=u_2, v_2=u_3\\[/tex][tex]Now,\\Lets\ consider\ the\ first\ two\ classes.\\37=\frac{u_1+v_1}{2} \\42=\frac{u_2+v_2}{2}\\By\ adding\ the\ equations:\\79= \frac{u_1+v_1}{2}+\frac{u_2+v_2}{2}\\79=\frac{u_1+v_1+u_2+v_2}{2}\\79=\frac{(u_1+v_2)+(v_1+u_2)}{2}\\79=\frac{(u_1+v_2)}{2}+\frac{(v_1+u_2)}{2}\\Now,\\As\ the\ mid-point\ between\ two\ points\ can\ be\ calculated\ by\\ its\ average:\frac{u+v}{2} \\Hence,\\u_2\ lies\ in\ the\ mid-point\ of\ u_1\ and\ v_2.\\u_2=\frac{(u_1+v_2)}{2}\\[/tex]
[tex]Hence,\\By\ substituting\ u_2=\frac{(u_1+v_2)}{2},\\79=u_2+\frac{v_1+u_2}{2}\\As\ v_1=u_2[Proven],\\79=u_2+ \frac{u_2+u_2}{2}\\79=u_2+\frac{2u_2}{2}\\79=2u_2\\Hence,\\u_2=\frac{79}{2}\\u_2=39.5\\Now,\ as\ we\ already\ know\ that\ the\ class\ size=5,\\v_2-u_2=5\\Hence,\\v_2=5+u_2\\Here,\\v_2=5+39.5\\v_2=44.5\\Hence,\\The\ upper\ limit\ of\ the\ second\ interval=44.5\\The\ lower\ limit\ of\ the\ second\ interval=39.5\\[/tex]