Respuesta :

Answer:

Step-by-step explanation:

abc = 1

We have to prove that,

[tex]\frac{1}{1+a+b^{-1}}+\frac{1}{1+b+c^{-1}}+\frac{1}{1+c+a^{-1}}=1[/tex]

We take left hand side of the given equation and solve it,

[tex]\frac{1}{1+a+\frac{1}{b}}+\frac{1}{1+b+\frac{1}{c}}+\frac{1}{1+c+\frac{1}{a}}[/tex]

Since, abc = 1,

[tex]\frac{1}{c}=ab[/tex] and c = [tex]\frac{1}{ab}[/tex]

By substituting these values in the expression,

[tex]\frac{1}{1+a+\frac{1}{b}}+\frac{1}{1+b+\frac{1}{c}}+\frac{1}{1+c+\frac{1}{a}}=\frac{1}{1+a+\frac{1}{b}}+\frac{1}{1+b+ab}+\frac{1}{1+\frac{1}{ab}+\frac{1}{a}}[/tex]

                                       [tex]=\frac{b}{b+ab+1}+\frac{1}{1+b+ab}+\frac{ab}{ab+1+b}[/tex]

                                       [tex]=\frac{1+b+ab}{1+b+ab}[/tex]

                                       [tex]=1[/tex]

Which equal to the right hand side of the equation.

Hence, [tex]\frac{1}{1+a+b^{-1}}+\frac{1}{1+b+c^{-1}}+\frac{1}{1+c+a^{-1}}=1[/tex]

Otras preguntas