Respuesta :
Answer:
Following are thew solution to this question:
Step-by-step explanation:
Please find the complete question in the attached file.
Using formula:
[tex]\text{Margin of error} = \frac{(z \times \sigma) }{\sqrt{n}}[/tex]
n = the number of work cycles for 95 confidence interval
z-score = 1.96
So, [tex]\frac{(z \times \sigma)}{\sqrt{n}}[/tex] = [tex]\ Mean \times 0.02[/tex]
[tex]\frac{(1.96 \times 0.376)}{\sqrt{n}} = 4.416666667 \times 0.02 \\\\\\[AVERAGE(4,4.5,5,4.5,4.5,4) = 4.416666667][/tex]
[tex]\sqrt{n} = \frac{(1.96 \times 0.376)}{(4.416666667 \times 0.02)} \\\\[/tex]
[tex]= 8.342943396\\\\[/tex]
[tex]n = 69.6047045[/tex]
[tex]= 70[/tex]

Using the sample size formula, the number of samples required is 919.
- Standard deviation, σ = 0.376
From the data given :
- Mean = (4 + 4.5 + 5 + 4.5 + 4.5 + 4) / 6 = 4.417
- Standard deviation = 0.376
Using the sample size relation thus:
- [tex] n = (\frac{T_{critical}σ}{E})^{2}[/tex]
- E = Margin of Error = 5% = 0.05
- Tcritical at 99%, df = 5 = 4.032 (T distribution table)
Substituting the values into the equation :
[tex] n = (\frac{4.032 \times 0.376 }{0.05})^{2}[/tex]
[tex] n = (\frac{1.516032}{0.05})^{2} = 919.34[/tex]
Hence, the sample size required is 919.
Learn more : https://brainly.com/question/25609130