Ideal gas helium flows through the inlet of an isentropic nozzle with a velocity of 25 m/s, and the exit flow is at 100 kPa, 300 K, and has a velocity of 250 m/s. a. Determine the inlet temperature. b. Determine the inlet pressure. c. Determine the area ratio between inlet and exit

Respuesta :

Answer:

a. The inlet temperature is approximately 305.232 K

b. The inlet pressure is approximately 452.0108 kPa

c. The area ratio between the inlet and exit is approximately 2.2509

Explanation:

a. From the energy equation related to the question, we have;

[tex]C_p \cdot (T_i - T_e) = \dfrac{1}{2} \cdot \left (v_e^2 - v_1^2 \right)[/tex]

Where;

[tex]C_p[/tex] = The specific heat capacity for helium = 5.913 kJ/(kg·K)

[tex]T_i[/tex] = The inlet temperature

[tex]T_e[/tex] = The exit temperature = 300 K

[tex]v_i[/tex] = The inlet velocity = 25 m/s

[tex]v_e[/tex] = The exit velocity = 250 m/s

Therefore, we have;

[tex]T_i= \dfrac{ \dfrac{1}{2} \cdot \left (v_e^2 - v_1^2 \right)}{C_p} + T_e = \dfrac{ \dfrac{1}{2} \times \left (250^2 - 25^2 \right)}{5.913 \times 1000} + 300 \approx 305.232[/tex]

The inlet temperature = [tex]T_i[/tex] ≈ 305.232 K

b. From the following equation for the critical pressure, for helium, we have;

[tex]\dfrac{P_c}{P_i} = \left (\dfrac{2}{n + 1} \right ) ^{\dfrac{n}{n - 1} } = 0.487[/tex]

Where;

[tex]P_c[/tex] = The critical pressure = 2.26 atm for helim

[tex]P_i[/tex] = The inlet pressure

n = The polytropic constant

We have;

[tex]\dfrac{2.26 \ atm}{P_i} = 0.487[/tex]

[tex]\therefore P_i = \dfrac{2.26 \ atm}{0.487} \approx 4.641 \ atm[/tex]

The inlet pressure, [tex]P_i[/tex] ≈ 4.641 atm ≈ 452.0108 kPa

c. The inlet to exit pressure ratio is given as follows;

[tex]P_e = \dfrac{A_i \times T_e \times v_i}{A_e \times T_i \times v_e} \times P_i[/tex]

Therefore, we have;

[tex]\dfrac{A_i}{A_e} = \dfrac{P_e \times T_i \times v_e}{ T_e \times v_i \times P_i} = \dfrac{100 \times 305.232 \times 250}{ 300 \times 25 \times 452.0108} = 2.2509[/tex]

The area ratio between the inlet and exit, [tex]A_i/A_e[/tex] ≈ 2.2509.