Respuesta :

Answer:

[tex]given \\ \frac{ {(y + 1)}^{5} }{(y + 1) ^{3} } \\ as \: they \: have \: same \: base \\ {(y + 1)}^{5 - 3} \\ = (y + 1) ^{2} \\ or \: we \: can \: write \\ = (y + 1)(y + 1) \\ \\ hope \: it \: helps.[/tex]

Answer:

The answer is  [tex]y^2+2y+1[/tex]

Explanation:

- Properties of Exponent -

[tex]\frac{a^m}{a^n}=a^{m-n}[/tex]

Our a is y+1

Our m is 5

Our n is 3

[tex]\frac{(y+1)^5}{(y+1)^3}=(y+1)^{5-3}\\(y+1)^2[/tex]

- Multiply The Polynomial -

As for the Quadratic Polynomial and being squared, we use the following formula:

[tex](x+y)^2=x^2+2xy+y^2[/tex]

Our x is y

Our y is 1

Thus,

[tex](y+1)^2=y^2+2(y)(1)+1^2\\(y+1)^2=y^2+2y+1[/tex]

As our simplified, multiplied form is [tex]y^2+2y+1[/tex]