Respuesta :

Answer:

[tex]H = (5,1)[/tex]

Step-by-step explanation:

The attachment is not clear. However, the points of G and F are:

[tex]F = (3, 2)[/tex]

[tex]G = (4, 4)[/tex]

And the options are:

[tex]A.\ (1, 2) \\ B. (4, 2)\\ C. (5, 1) \\ D. (2, 5)[/tex]

Required

Determine the coordinates of H

This question will be solved using distance formula, D

[tex]D = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}[/tex]

Since F is equidistant of G and H, the formula can be represented as:

[tex]D = \sqrt{(x_2 - x)^2 + (y_2 - y)^2}[/tex] and

[tex]D = \sqrt{(x_1 - x)^2 + (y_1 - y)^2}[/tex]

Where:

[tex](x_1,y_1) = (4,4)[/tex]

[tex](x,y) = (3,2)[/tex]

[tex]H = (x_2,y_2)[/tex]

Substitute values for x , y , x2 and y2 in [tex]D = \sqrt{(x_2 - x)^2 + (y_2 - y)^2}[/tex]

[tex]D = \sqrt{(x_2 - 3)^2 + (y_2 - 2)^2}[/tex]

Square both sides:

[tex]D^2 = (x_2 - 3)^2 + (y_2 - 2)^2[/tex]

Substitute values for x , y , x1 and y1 in [tex]D = \sqrt{(x_1 - x)^2 + (y_1 - y)^2}[/tex]

[tex]D = \sqrt{(4 - 3)^2 + (4 - 2)^2}[/tex]

Square both sides:

[tex]D^2 = (4 - 3)^2 + (4 - 2)^2[/tex]

[tex]D^2 = (1)^2 + (2)^2[/tex]

[tex]D^2 = 1 + 4[/tex]

[tex]D^2 = 5[/tex]

Substitute 5 for D^2 in [tex]D^2 = (x_2 - 3)^2 + (y_2 - 2)^2[/tex]

[tex]5 = (x_2 - 3)^2 + (y_2 - 2)^2[/tex]

From the list of given options, the values of x and y that satisfy the above condition is: (5,1)

This is shown below

[tex]5 = (5-3)^2 + (1-2)^2[/tex]

[tex]5 = (2)^2 + (-1)^2[/tex]

[tex]5 = 4 + 1[/tex]

[tex]5 = 5[/tex]

Other options do not satisfy this condition. Hence, the coordinates of H is:

[tex]H = (5,1)[/tex]