6. a. find the excitation energy from the ground level to the third excited level for an electron confined to a box that has a width of 0.125 nm. B. the electron makes a transition from the n

Respuesta :

Complete Question

(A) Find the excitation energy from the ground level to the third excited level for an electron confined to a box that has a width of 0.125 nm .

(B) The electron makes a transition from the n=1 to n= 4 level by absorbing a photon. Calculate the wavelength of this photon.

Answer:

A

  [tex]\Delta E = 337 \ eV[/tex]

B

  [tex]\lambda = 3.439 *10^{-9} \ m[/tex]

Explanation:

Considering question a

From the question we are told that

 The width of the box is  [tex]w = 0.125 \ nm = 0.125 *10^{-9} \ m[/tex]

Generally the energy level of a particle confined to a box is mathematically represented as

         [tex]E_n = \frac{n^2 h^2}{8 m L^2 }[/tex]

Generally the excitation energy is mathematically represented as

         [tex]\Delta E = \frac{h^2 }{ 8 m L^2 } [n_2^2 - n_1 ^2 ][/tex]

From the question  [tex]n_2 = 3\ (Third \ excited \ level ) \ \ and \ \ n_1 = 1[/tex]  

   Here h  is the Planck's constant with a value  of  [tex]h = 6.62607015 * 10^{-34} J \cdot s[/tex]

         m is the mass of  electron with value  [tex]m = 9.11 *10^{-31} \ kg[/tex]

So

        [tex]\Delta E = \frac{[6.62607015 * 10^{-34} ]^2 }{ 8 * (9.11 *10^{-31}) (0.125 *10^{-9})^2 } [3^2 - 1^2 ][/tex]

=>     [tex]\Delta E = 539 *10^{-19} \ J[/tex]

=>     [tex]\Delta E = \frac{539 *10^{-19}}{1.60 *10^{-19}} \ J[/tex]

=>     [tex]\Delta E = 337 \ eV[/tex]

Considering question b

Generally the energy level of a particle confined to a box is mathematically represented as

         [tex]E_n = \frac{n^2 h^2}{8 m L^2 }[/tex]

Generally the excitation energy is mathematically represented as

         [tex]\Delta E = \frac{h^2 }{ 8 m L^2 } [n_2^2 - n_1 ^2 ][/tex]

From the question  [tex]n_2 = 4 \ \ and \ \ n_1 = 1[/tex]

 Here h  is the Planck's constant with a value  of  [tex]h = 6.62607015 * 10^{-34} J \cdot s[/tex]

         m is the mass of  electron with value  [tex]m = 9.11 *10^{-31} \ kg[/tex]

So

        [tex]\Delta E = \frac{[6.62607015 * 10^{-34} ]^2 }{ 8 * (9.11 *10^{-31}) (0.125 *10^{-9})^2 } [4^2 - 1^2 ][/tex]

=>      [tex]\Delta E = 578 *10^{-19} \ J[/tex]

=>      [tex]\Delta E = \frac{ 578 *10^{-19}}{1.60 *10^{-19 }}[/tex]  

=>      [tex]\Delta E = 361.45 \ eV[/tex]  

Gnerally the wavelength is mathematically represented as

          [tex]\lambda = \frac{hc}{\Delta E }[/tex]

=>       [tex]\lambda = \frac{ 6.626 *10^{-34} * (3.0 *10^{8})}{578 *10^{-19} }[/tex]

=>       [tex]\lambda = 3.439 *10^{-9} \ m[/tex]