Determine whether each equation is True or False. In case you find a "False" equation, explain why is False.

Answer:
(1) TRUE.
(2) FALSE.
(3) FALSE.
(4) TRUE.
(5) FALSE.
Step-by-step explanation:
(1) [tex]\sqrt{32} = 2^{\frac{5}{2} }[/tex]
[tex]2^{\frac{5}{2} } = (\sqrt{2} )^5 = (\sqrt{2} \ \times \ \sqrt{2} \ \times \ \sqrt{2} \ \times \ \sqrt{2} \ \times \ \sqrt{2}) = 4\sqrt{2}\\\\\sqrt{32} = \sqrt{16 \ \times \ 2}\ = \ \sqrt{16} \ \times \ \sqrt{2} \ = \ 4\sqrt{2}[/tex]
Thus, the equation is TRUE.
(2) [tex]16^{\frac{3}{8} } = 8^2[/tex]
[tex]16^{\frac{3}{8} } =(2^4)^{\frac{3}{8} } = 2^\frac{3}{2} }= (\sqrt{2} )^3 = (\sqrt{2} \ \times \ \sqrt{2} \ \times \ \sqrt{2}) = 2\sqrt{2} \\\\8^2 = 64[/tex]
Thus, the equation is FALSE.
(3) [tex]4^{\frac{1}{2} } = \sqrt[4]{64}[/tex]
[tex]4^{\frac{1}{2} }= \sqrt{4} = 2\\\\\sqrt[4]{64} = (64)^{\frac{1}{4} } = (2^6)^{\frac{1}{4} }= 2^{\frac{6}{4} } = 2^{\frac{3}{2} }=(\sqrt{2} )^3 = (\sqrt{2} \times \sqrt{2} \times \sqrt{2} ) = 2\sqrt{2}[/tex]
Thus, the equation is FALSE.
(4) [tex]2^8 = (\sqrt[3]{16} )^6[/tex]
[tex]2^8 = 256\\\\ (\sqrt[3]{16} )^6 = (16)^{\frac{6}{3} } = (2^4)^{\frac{6}{3} } = (2)^{\frac{24}{3} } = 2^8 = 256[/tex]
Thus, the equation is TRUE.
(5) [tex](\sqrt{64} )^{\frac{1}{3} } = 8^{\frac{1}{6} }\\\\[/tex]
[tex]8^{\frac{1}{6} } = (2^3)^{\frac{1}{6} } = 2^{\frac{3}{6} } = 2^{\frac{1}{2} } = \sqrt{2} \\\\(\sqrt{64} )^{\frac{1}{3} } = (2^6)^{\frac{1}{3} } = 2^{\frac{6}{3} } = 2^2 = 4[/tex]
Thus, the equation is FALSE.