Respuesta :
Point-slope form, y-y1 = m(x-x1)
(y-(-4)) = -5/6 (x-8)
y+4 = -5x/6+20/3
y = -5x/6+20/3 - 4
y = -5x/6 + 8/3
Answer:
[tex]y-(-4)=\frac{-5}{4}(x-8)[/tex]
Step-by-step explanation:
Given point = (8,-4)
Slope = [tex]\frac{-5}{6}[/tex]
General equation of point slope form : [tex]y-y_1=m(x-x_1)[/tex]
[tex](x_1,y_1)=(8,-4)[/tex]
[tex]m=\frac{-5}{6}[/tex]
Substitute the values in general equation :
[tex]y-(-4)=\frac{-5}{4}(x-8)[/tex]
[tex]y+4=\frac{-5}{4}(x-8)[/tex]
[tex]y+4=\frac{-5}{4}x+10[/tex]
[tex]y=\frac{-5}{4}x+6[/tex]
Hence the equation, in point-slope form, for a line that goes through (8, −4) and has a slope of −5/6 is [tex]y-(-4)=\frac{-5}{4}(x-8)[/tex]