Calculate the wavelength, in nanometers, of the spectral line produced when an electron in a hydrogen atom undergoes the transition from the energy level n = 5 to the level n = 2.

Respuesta :

Answer: The wavelength of light emitted is 434 nm

Explanation:

To calculate the wavelength of light, we use Rydberg's Equation:

[tex]\frac{1}{\lambda}=R_H\left(\frac{1}{n_i^2}-\frac{1}{n_f^2} \right )[/tex]

Where,

[tex]\lambda[/tex] = Wavelength of radiation

[tex]R_H[/tex] = Rydberg's Constant  = [tex]1.097\times 10^7m^{-1}[/tex]

[tex]n_f[/tex] = final energy level = 2

[tex]n_i[/tex]= initial energy level = 5

Putting the values in above equation, we get:

[tex]\frac{1}{\lambda }=1.097\times 10^7m^{-1}\left(\frac{1}{5^2}-\frac{1}{2^2} \right )\\\\\lambda =\frac{1}{-2.304\times 10^6m^{-1}}=-4.34\times 10^{-7}m[/tex]

As, the electron is getting emitted from n = 5 to n = 2. So, the wavelength will come out to be negative because it is getting emitted.

Converting this into nanometers, we use the conversion factor:

[tex]1m=10^9nm[/tex]

So, [tex]4.34\times 10^{-7}m\times (\frac{10^9nm}{1m})=434nm[/tex]

Hence, the wavelength of light emitted is 434 nm