Respuesta :
Answer:
the rate of change is 3.8m/s
Step-by-step explanation:
The volume of the right circular cone is
[tex]V= \frac{\pi*r^2h}{3}.[/tex]
The rate of change of volume is
[tex]\frac{dV}{dt} =\frac{d}{dt}( \frac{\pi*r^2h}{3})=\frac{\pi}{3} \frac{d}{dt}(r^2h)=\frac{\pi}{3}(2rh\frac{dr}{dt}+r^2\frac{dh}{dt})[/tex]
In order to proceed further we have to define r in terms of h so tht we can compute the derivative above.
The ratio between h and r is
[tex]\frac{h}{r}=\frac{6}{3} =2[/tex]
Therefore [tex]r=\frac{h}{2}[/tex].
We plug that into the derivative above and get:
[tex]2rh\frac{dr}{dt}+r^2\frac{dh}{dt}=\frac{h^2}{2}\frac{dh}{dt}+\frac{h^2}{4}\frac{dh}{dt}=\frac{3h^2}{4}\frac{dh}{dt}.[/tex]
Thus
[tex]\frac{dV}{dt}=\frac{\pi}{3}\frac{3h^2}{4}\frac{dh}{dt}[/tex]
Now for the numerical part.
The rate of change of volume [tex]\frac{dV}{dt}[/tex] is [tex]12\frac{m^3}{s}[/tex], so when the water is 2 meters deep [tex]h=2[/tex], therefore:
[tex]12=\frac{\pi*3*2^2}{4*3} \frac{dh}{dt} \\\\\therefore \boxed{ \frac{dh}{dt}=3.8m/s.}[/tex]
Answer:
3.82 meters/sec
Step-by-step explanation:
The guy above is correct he just forgot to put the third decimal place