Determine which steps are used to find the product shown. Put the steps in the order in which they would be performed

+75 + 10 + 3x + 2

2 + 15 + + 7 + 8 + 5

(3 + b) (+ 2)

(+ + 2) (+ + 5)

(6 + 2)(+ + 5) (+ 1)(5 + 2)

(5 + 2)(8 + 2) (5 + 5)( + 1)

(3 + 5)(+2)

(3 + 25 + 5)

I + 2

( + 7)(5 + 1)

(5 + 4)( + 2)

(+ + b)( + 2)

(5 + 5)

($ + 7)(8 + 1) ( + 3)( + 1)

(1 + 4)(8 + 1)(8 + 3+ 2)

Respuesta :

Answer:

1

Step-by-step explanation:

The algebraic expression is

(x²+ 7x+10/ x²+ 4x+4 ) (x²+ 3x+2/x²+ 6x+5)

The options are                                               Arrangement

a.(x+5/x+2) * ( x+2/x+5)                                             Number 2

b.(x+7/x+4) ( x+1/x+2)

c.    1                                                                            Number 4

d.   (x+5) ( x+2) /(x+5)

e.  (x+7) (x+1)/(x+4) ( x+1) * (x+3) (x+1)/(x+3) (x+2)

f. (x+2) (x+5)/(x+2) ( x+2) * (x+1) (x+2)/(x+5) ( x+1)       Number 1

g. x+2

h.(x+5/x+2) ( x+2/x+5)                                               Number 3

Answer

Factorizing the expressions (x²+ 7x+10/ x²+ 4x+4 ) (x²+ 3x+2/x²+ 6x+5)

=(x²+ 5x+2x+ 10/ x²+ 2x+2x+4 ) (x²+ 2x+x+ 2/x²+ 5x+x+5)

Taking common

=[x(x+5) +2(x+5)/ x(x+2) +2(x+2) ] [ x(x+2) +1(x+2)/ x((x+5) +1(x+5)]

Putting commons together

=[(x+2) (x+5)/ (x+2) (x+2)] [ (x+2)(x+1)/ (x+1) (x+5)]

Cancelling

= [ (x+5)/ (x+2)]* [ (x+2)/  (x+5)]

=[ (x+5)/ (x+2)] [ (x+2)/  (x+5)]

Again Cancelling

=1

The above question is solved in 4 steps :

Step 1

(x+2) (x+5)/(x+2) ( x+2) * (x+1) (x+2)/(x+5) ( x+1)

Step 2

(x+5/x+2) * ( x+2/x+5)

Step 3

(x+5/x+2)  ( x+2/x+5)

Step 4

1   which is the answer .

The steps

(x+7) (x+1)/(x+4) ( x+1) * (x+3) (x+1)/(x+3) (x+2) ,

(x+5) ( x+2) /(x+5),  

(x+7/x+4) ( x+1/x+2) and (x+2) are not related to this question.