Complete Question:
Complete the recursive formula of the arithmetic sequence 12, 10, 8, 6, ....
[tex]b_1 = [\ ][/tex]
[tex]b_n = b_{n - 1} + [\ ][/tex]
Answer:
[tex]b_1 = 12[/tex]
[tex]b_n = b_{n-1} - 2[/tex]
Step-by-step explanation:
Required
Complete:
[tex]b_1 = [\ ][/tex]
[tex]b_n = b_{n - 1} + [\ ][/tex]
From the question, the first term is 12.
So:
[tex]b_1 = 12[/tex]
Solving further:
[tex]b_2 = 10 = 12 - 2 = b_1 - 2[/tex]
[tex]b_3 = 8 = 10 - 2 = b_2 - 2[/tex]
[tex]b_4 = 6 = 8 - 2 = b_3 - 2[/tex]
Following the above sequence:
[tex]b_n[/tex] can then be calculated as
[tex]b_n = b_{n-1} - 2[/tex]