Respuesta :

Space

Answer:

[tex]\displaystyle d = \sqrt{13}[/tex]

General Formulas and Concepts:

Pre-Algebra

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right

Algebra I

  • Coordinates (x, y)

Algebra II

  • Distance Formula: [tex]\displaystyle d = \sqrt{(x_2-x_1)^2+(y_2-y_1)^2}[/tex]

Step-by-step explanation:

Step 1: Define

Point (4, -8)

Point (7, -10)

Step 2: Find distance d

Simply plug in the 2 coordinates into the distance formula to find distance d

  1. Substitute in points [DF]:                     [tex]\displaystyle d = \sqrt{(7-4)^2+(-10+8)^2}[/tex]
  2. (Parenthesis) Subtract/Add:                [tex]\displaystyle d = \sqrt{(3)^2+(-2)^2}[/tex]
  3. [√Radical] Exponents:                         [tex]\displaystyle d = \sqrt{9+4}[/tex]
  4. [√Radical] Add:                                    [tex]\displaystyle d = \sqrt{13}[/tex]

Answer:

The distance between the points (4,-8) and (7-10)

[tex] = \sqrt{ {(7 - 4)}^{2} + {( - 10 - ( - 8))}^{2} } \\ = \sqrt{ {(7 - 4)}^{2} + {( - 10 + 8)}^{2} } \\ = \sqrt{ {3}^{2} + { (- 2)}^{2} } \\ = \sqrt{9 + 4} \\ = \sqrt{13} \: units [/tex]

√13 is the right answer.