Respuesta :
Answer:
[tex]\displaystyle d = \sqrt{13}[/tex]
General Formulas and Concepts:
Pre-Algebra
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
- Left to Right
Algebra I
- Coordinates (x, y)
Algebra II
- Distance Formula: [tex]\displaystyle d = \sqrt{(x_2-x_1)^2+(y_2-y_1)^2}[/tex]
Step-by-step explanation:
Step 1: Define
Point (4, -8)
Point (7, -10)
Step 2: Find distance d
Simply plug in the 2 coordinates into the distance formula to find distance d
- Substitute in points [DF]: [tex]\displaystyle d = \sqrt{(7-4)^2+(-10+8)^2}[/tex]
- (Parenthesis) Subtract/Add: [tex]\displaystyle d = \sqrt{(3)^2+(-2)^2}[/tex]
- [√Radical] Exponents: [tex]\displaystyle d = \sqrt{9+4}[/tex]
- [√Radical] Add: [tex]\displaystyle d = \sqrt{13}[/tex]
Answer:
The distance between the points (4,-8) and (7-10)
[tex] = \sqrt{ {(7 - 4)}^{2} + {( - 10 - ( - 8))}^{2} } \\ = \sqrt{ {(7 - 4)}^{2} + {( - 10 + 8)}^{2} } \\ = \sqrt{ {3}^{2} + { (- 2)}^{2} } \\ = \sqrt{9 + 4} \\ = \sqrt{13} \: units [/tex]