Respuesta :

Answer:

x ≈ 2.1

y ≈ 5.4

w = 5

Step-by-step explanation:

The given parameters are;

Segment AC = 13

Segment BC = y

Segment AD = 12

Segment CD = w

Segment BD = x

By Pythagoras's theorem, for the right triangle ΔACD, we have;

[tex]\overline {AC}[/tex]² = [tex]\overline {AD}[/tex]²  + [tex]\overline {CD}[/tex]²

∴ 13² = 12² + w²

w² = 13² - 12² = 25

w = √(25) = 5

w = 5

By, Pythagoras's theorem similarly, in the right triangle ΔBCD we have;

y² = x² + w²

∴ y² = x² + 5² = x² + 25

y² = x² + 25

In the right triangle ΔABC we have;

[tex]\overline {AB}[/tex]² = [tex]\overline {AC}[/tex]²  + [tex]\overline {CB}[/tex]²

∴ (12 + x)² = 13² + y² = 13² + (x² + 25)

(12 + x)² = 13² + (x² + 25)

144 + 24·x + x² = 13² + x² + 25

24·x = 13² + 25 - 144 = 50

x = 50/24 ≈ 2.1

x ≈ 2.1

y² = x² + 25

∴ y = √(x² + 25) = √((50/24)² + 25) = 65/12 ≈ 5.4

y ≈ 5.4

Ver imagen oeerivona