contestada

Hi everyone, so I was doing some math homework and I got stuck. Please help me with these two questions (numbers 7 and 8). Thank you!

I'll also try my hardest to help you in return!

Hi everyone so I was doing some math homework and I got stuck Please help me with these two questions numbers 7 and 8 Thank you Ill also try my hardest to help class=

Respuesta :

Answer:

7). x = 6, [tex]\frac{14}{3}[/tex]

8). x = 2

Step-by-step explanation:

7). Area of a circle = πr²

   Here 'r' = radius of the circle

Area of the shaded region of the circle = Area of the large circle - Area of the small circle

                                                                 = π(x)² - [tex]\pi (\frac{x}{2})^2[/tex]

                                                                 = [tex]\pi x^{2} -\pi (\frac{x^2}{4})[/tex]

                                                                 = [tex]\pi x^{2}(1-\frac{1}{4})[/tex]

                                                                 = [tex]\frac{3\pi x^{2} }{4}[/tex] in²

If area of the shaded region is (8πx - 21π) in²

[tex]\frac{3\pi x^{2} }{4}=8\pi x - 21\pi[/tex]

[tex]\frac{3x^2}{4}=8x-21[/tex]

3x² = 32x - 84

3x²- 32x + 84 = 0

3x² - 14x - 18x + 84 = 0

x(3x - 14) - 6(3x - 14) = 0

(x - 6)(3x - 14) = 0

x = 6, [tex]\frac{14}{3}[/tex]

8). Area of the shaded region = Area of the largest circle - Area of the smaller semicircle - Area of the smallest semicircle

Area of the largest circle = π(2x + 2x)²

                                         = 16πx²

Area of the smaller semicircle = [tex]\frac{1}{2}\pi (3x)^{2}[/tex]

                                                  = 4.5(πx²)

Area of the smallest semicircle = [tex]\frac{1}{2}\pi (2x)^{2}[/tex]

                                                    = 2πx²

Now area of he shaded region = 16πx² - [4.5(πx²) + 2πx²]

                                                    = 16πx² - 6.5πx²

                                                    = 9.5πx² mm²

If the area of the shaded region = 12πx + 14π

12πx + 14π = 9.5πx²

12x + 14 = 9.5x²

9.5x² - 12x - 14 = 0

19x² - 24x - 28 = 0

19x² - 38x + 14x - 28 = 0

19x(x - 2) + 14(x - 2) = 0

(19x + 14)(x - 2) = 0

x = [tex]-\frac{14}{19},2[/tex]

But the radius o a circle can't be negative.

Therefore, x = 2 will be the answer.