Respuesta :

Answer:

The remaining lenghts are [tex]x = 20.364\,cm[/tex] and [tex]y = 12.925\,cm[/tex].

Step-by-step explanation:

Given that there are two triangles opposite to each other and between two parallel lines, then both are similar, meaning than following relationships exist:

[tex]\frac{AC}{CD} = \frac{BC}{CE} = \frac{AB}{DE}[/tex] (1)

If we know that [tex]AC = 11\,cm[/tex], [tex]CD = 28\,cm[/tex], [tex]BC = 8\,cm[/tex] and [tex]DE = 32.9\,cm[/tex], then the missing lengths are, respectively:

[tex]\frac{11\,cm}{28\,cm} = \frac{8\,cm}{x}[/tex]

[tex]x = \frac{(28\,cm)\cdot (8\,cm)}{11\,cm}[/tex]

[tex]x = 20.364\,cm[/tex]

[tex]\frac{11\,cm}{28\,cm} = \frac{y}{32.9\,cm}[/tex]

[tex]y = \frac{(11\,cm)\cdot (32.9\,cm)}{28\,cm}[/tex]

[tex]y = 12.925\,cm[/tex]

The remaining lenghts are [tex]x = 20.364\,cm[/tex] and [tex]y = 12.925\,cm[/tex].