Respuesta :

Answer:

    [tex]\lim_{n \to \infty} U_n =0[/tex]

Given series is convergence by using Leibnitz's rule

Step-by-step explanation:

Step(i):-

Given series is an alternating series

∑[tex](-1)^{n} \frac{n^{2} }{n^{3}+3 }[/tex]

Let   [tex]U_{n} = (-1)^{n} \frac{n^{2} }{n^{3}+3 }[/tex]

By using Leibnitz's rule

   [tex]U_{n} - U_{n-1} = \frac{n^{2} }{n^{3} +3} - \frac{(n-1)^{2} }{(n-1)^{3}+3 }[/tex]

 [tex]U_{n} - U_{n-1} = \frac{n^{2}(n-1)^{3} +3)-(n-1)^{2} (n^{3} +3) }{(n^{3} +3)(n-1)^{3} +3)}[/tex]

Uₙ-Uₙ₋₁ <0

Step(ii):-

    [tex]\lim_{n \to \infty} U_n = \lim_{n \to \infty}\frac{n^{2} }{n^{3}+3 }[/tex]

                       [tex]= \lim_{n \to \infty}\frac{n^{2} }{n^{3}(1+\frac{3}{n^{3} } ) }[/tex]

                    = [tex]= \lim_{n \to \infty}\frac{1 }{n(1+\frac{3}{n^{3} } ) }[/tex]

                       [tex]=\frac{1}{infinite }[/tex]

                     =0

    [tex]\lim_{n \to \infty} U_n =0[/tex]

∴ Given series is converges