Respuesta :

Answer:

[tex]-\frac{45}{16}[/tex]

Step-by-step explanation:

[tex]g(x)=\frac{x^{2} -7x+1}{4}[/tex]

Take the derivate of g:

[tex]g'(x)=\frac{x-7}{4}[/tex]

Find x that:

g'(x)=0

solving:

[tex]\frac{2x-7}{4}=0\\x=\frac{7}{2}[/tex]

This x give the least possible value that are g(7/2):

[tex]g(\frac{7}{2}) =-\frac{45}{16}[/tex]