Respuesta :

Answer:

Option A

Step-by-step explanation:

Central angle of the pentagon = [tex]\frac{360}{\text{Number of sides of the regular polygon}}[/tex]

                                                   = [tex]\frac{360}{5}[/tex]

                                                   = 72°

Measure of ∠BAC = 72°

Therefore, measure of ∠BAD = [tex]\frac{72}{2}[/tex]

                                                 = 36°

By sine rule in ΔABD,

sin(36°) = [tex]\frac{\text{Opposite side}}{\text{Hypotenuse}}[/tex]

            = [tex]\frac{BD}{AB}[/tex]

            = [tex]\frac{BD}{14}[/tex]

BD = 14(sin36°)

     = 8.23 mm

Similarly, by cosine rule,

cos(36°) = [tex]\frac{\text{Adjacent side}}{\text{Hypotenuse}}[/tex]

              = [tex]\frac{AD}{AB}[/tex]

              = [tex]\frac{AD}{14}[/tex]

AD = 14(cos36°)

     = 11.33 mm

Area of ΔABC = 2(Area of ΔABD)

                        = [tex]2(\frac{1}{2}(\text{Base})(\text{Height})[/tex]

                        = AD × BD

                        = 11.33 × 8.23

                        = 93.21 mm²

Since, area of regular pentagon given in the picture = 5(area of ΔABC)

= 5(93.21)

= 466 mm²

Therefore, Option A will be the answer.

Ver imagen eudora