6. m A = 8x - 2, m B = 2x - 8, and m2 C = 94 - 4x. List the sides of A ABC in order from shortest to
longest.
AC: AB: BC
AC :BC: AB
AB: AC : BC
BC: AC : AB

Respuesta :

Given:

In triangle ABC, m∠A=(8x-2)°, m∠B=(2x-8)° and m∠C=(94-4x)°.

To find:

The sides of the triangle ABC in order from shortest to  longest.

Solution:

In triangle ABC,

[tex]m\angle A+m\angle B+m\angle C=180^\circ[/tex]              (Angle sum property)

[tex](8x-2)^\circ+(2x-8)^\circ+(94-4x)^\circ=180^\circ[/tex]

[tex](6x+84)^\circ=180^\circ[/tex]

[tex]6x+84=180[/tex]

[tex]6x=180-84[/tex]

[tex]6x=96[/tex]

Divide both sides by 6.

[tex]x=\dfrac{96}{6}[/tex]

[tex]x=16[/tex]

Now,

[tex]m\angle A=(8(16)-2)^\circ[/tex]

[tex]m\angle A=(128-2)^\circ[/tex]

[tex]m\angle A=126^\circ[/tex]

Similarly,

[tex]m\angle B=(2(16)-8)^\circ[/tex]

[tex]m\angle B=(32-8)^\circ[/tex]

[tex]m\angle B=24^\circ[/tex]

And,

[tex]m\angle C=(94-4(16))^\circ[/tex]

[tex]m\angle C=(94-64)^\circ[/tex]

[tex]m\angle C=30^\circ[/tex]

In a triangle the smaller angle has shorter opposite side and larger angle has longer opposite side.

[tex]24^\circ<30^\circ<126^\circ[/tex]

[tex]m\angle B<m\angle C<m\angle A[/tex]

[tex]AC<AB<BC[/tex]

List the sides of triangle ABC in order from shortest to  longest is AC:AB:BC.

Therefore, the correct option is A.