Respuesta :

Answer:

a) The equation of the tangent to the circle

       x + √3y = 2

b)       [tex]a = \frac{-1}{\sqrt{3} } , b = \frac{2}{\sqrt{3} }[/tex]

Step-by-step explanation:

Step(i):-

Given the equation of the circle x² +y² =1

Tangent equation of the circle x² +y² =a²  is   xx₁ +yy₁ - a² =0

The tangent equation of the given circle

   xx₁ +yy₁ - 1² =0

This equation passes through the point ([tex](\frac{1}{2} , \frac{\sqrt{3} }{2} )[/tex]

       [tex]x(\frac{1}{2} ) +y(\frac{\sqrt{3} }{2} ) =1[/tex]

 ⇒   x + √3y = 2

The equation of the tangent to the circle

       x + √3y = 2

Step(ii):-

Slope - intercept form    y = ax +b

                                   √3y = - x + 2

                                    [tex]y = \frac{-x}{\sqrt{3} } + \frac{2}{\sqrt{3} }[/tex]

where  

           [tex]a = \frac{-1}{\sqrt{3} } and b = \frac{2}{\sqrt{3} }[/tex]