Answer:
Solving [tex](13)^2+(b)^2=(18)^2[/tex] we get [tex]\mathbf{b=\sqrt{155},b=-\sqrt{155}}[/tex]
Step-by-step explanation:
13 squared plus b2 equals 18 squared. What is the answer?
We can write it as:
[tex](13)^2+(b)^2=(18)^2[/tex]
Now, solving and find value of b
We know that 13² = 169
and 18² = 324
Putting values:
[tex](13)^2+(b)^2=(18)^2\\169+b^2=324[/tex]
Subtract 169 on both sides
[tex]169+b^2-169=324-169\\b^2=155[/tex]
Now, taking square root on both sides
[tex]\sqrt{b^2}=\sqrt{155}\\b=\pm\sqrt{155}\\b=\sqrt{155},b=-\sqrt{155}[/tex]
So, solving [tex](13)^2+(b)^2=(18)^2[/tex] we get [tex]\mathbf{b=\sqrt{155},b=-\sqrt{155}}[/tex]