Respuesta :

Answer:

The value of x will be:

[tex]x=22\sqrt{2}[/tex]

or

[tex]x = 31.1[/tex]

Step-by-step explanation:

Given

  • a = 22
  • b = 22

To determine

hypotenuse x = ?

For a right-angled triangle with sides, a and b the hypotenuse c is defined as

[tex]c=\sqrt{a^2+b^2}[/tex]

substituting a = 22, b = 22 and c = x

[tex]x=\sqrt{22^2+22^2}[/tex]

[tex]x=\sqrt{22^2\cdot \:2}[/tex]

Apply radical rule:  [tex]\sqrt[n]{ab}=\sqrt[n]{a}\sqrt[n]{b},\:\quad \mathrm{\:assuming\:}a\ge 0,\:b\ge 0[/tex]

[tex]x=\sqrt{2}\sqrt{22^2}[/tex]

[tex]x=22\sqrt{2}[/tex]

or

[tex]x = 31.1[/tex]

Therefore, the value of x will be:

[tex]x=22\sqrt{2}[/tex]

or

[tex]x = 31.1[/tex]