please help me solve this problem.

Answer:
The value of x will be:
[tex]x=22\sqrt{2}[/tex]
or
[tex]x = 31.1[/tex]
Step-by-step explanation:
Given
To determine
hypotenuse x = ?
For a right-angled triangle with sides, a and b the hypotenuse c is defined as
[tex]c=\sqrt{a^2+b^2}[/tex]
substituting a = 22, b = 22 and c = x
[tex]x=\sqrt{22^2+22^2}[/tex]
[tex]x=\sqrt{22^2\cdot \:2}[/tex]
Apply radical rule: [tex]\sqrt[n]{ab}=\sqrt[n]{a}\sqrt[n]{b},\:\quad \mathrm{\:assuming\:}a\ge 0,\:b\ge 0[/tex]
[tex]x=\sqrt{2}\sqrt{22^2}[/tex]
[tex]x=22\sqrt{2}[/tex]
or
[tex]x = 31.1[/tex]
Therefore, the value of x will be:
[tex]x=22\sqrt{2}[/tex]
or
[tex]x = 31.1[/tex]