Respuesta :

c=10.35

<a=50.87°

<b=87.13°

Step-by-step explanation:

as we know

law of cosine

[tex]c = \sqrt{ {a}^{2} + {b}^{2} - 2ab. \cos(c) } [/tex]

[tex]c = \sqrt{ {14}^{2} + {18}^{2} - 2.14.18 - \cos( {35}^{o} ) } [/tex]

[tex]c = 10.35[/tex]

using the law of cosine

[tex]cos(a) = \frac{ {b}^{2} + {c}^{2} - {a}^{2} }{2bc} [/tex]

[tex] \cos(a) = \frac{ {18}^{2} + {10.35 }^{2} - {14}^{2} }{2.18.(10.35)} [/tex]

[tex]a = {50.87}^{o} [/tex]

b=87.13°