Respuesta :

Answer: 1.92

Step-by-step explanation:

Formula to find the mean absolute deviation:

[tex]MAD =\sum^{n=i}_{n=1}\dfrac{|x_i-\overlien{x}|}{n}[/tex]

, where [tex]\overline{x}=[/tex] mean , [tex]x_i's[/tex] = data values, n= number of data values.

Given data: 5,9,7,0,3,5,5

n= 7

Mean:

[tex]\overline{x}=\dfrac{5+9+7+0+3+5+5}{7}\\\\=\dfrac{34}{7}[/tex]

MAD = [tex]\dfrac {|5-\dfrac{34}{7}|+|9-\dfrac{34}{7}|+|7-\frac{34}{7}|+|0-\dfrac{34}{7}|+|3-\dfrac{34}{7}|+|5-\dfrac{34}{7}|+|5-\dfrac{34}{7}|}{7}[/tex]

[tex]=\dfrac{\frac17+\frac{29}{7}+\frac{15}{7}+\frac{34}{7}+\dfrac{13}{7}+\frac17+\frac17}{7}\\\\=\dfrac{\frac{94}{7}}{7}\\\\=\dfrac{94}{49}\approx1.92[/tex]

Hence, the  mean absolute deviation of 5,9,7,0,3,5,5 is 1.92(approx)