Answer:
The range of the function is:
[tex]\mathrm{Range\:of\:}3^x:\quad \begin{bmatrix}\mathrm{Solution:}\:&\:f\left(x\right)>0\:\\ \:\mathrm{Interval\:Notation:}&\:\left(0,\:\infty \:\right)\end{bmatrix}[/tex]
Please also check the attached graph.
Step-by-step explanation:
We also know that range is the set of values of the dependent variable for which a function is defined.
In other words,
Range refers to all the possible sets of output values on the y-axis.
It means the set of all the y-coordinates of the given points or ordered pairs on a graph will be the range.
Given the expression
[tex]y=3^x[/tex]
The range of an exponential function of the form
[tex]c\cdot \:n^{ax+b}+k\:\mathrm{is}\:\:f\left(x\right)>k[/tex]
[tex]k=0[/tex]
[tex]f\left(x\right)>0[/tex]
Therefore, the range of the function is:
[tex]\mathrm{Range\:of\:}3^x:\quad \begin{bmatrix}\mathrm{Solution:}\:&\:f\left(x\right)>0\:\\ \:\mathrm{Interval\:Notation:}&\:\left(0,\:\infty \:\right)\end{bmatrix}[/tex]
Please also check the attached graph.