Respuesta :

Answer:

The range of the function is:

[tex]\mathrm{Range\:of\:}3^x:\quad \begin{bmatrix}\mathrm{Solution:}\:&\:f\left(x\right)>0\:\\ \:\mathrm{Interval\:Notation:}&\:\left(0,\:\infty \:\right)\end{bmatrix}[/tex]

Please also check the attached graph.

Step-by-step explanation:

We also know that range is the set of values of the dependent variable for which a function is defined.  

In other words,  

Range refers to all the possible sets of output values on the y-axis.

It means the set of all the y-coordinates of the given points or ordered pairs on a graph will be the range.

Given the expression

[tex]y=3^x[/tex]

The range of an exponential function of the form

[tex]c\cdot \:n^{ax+b}+k\:\mathrm{is}\:\:f\left(x\right)>k[/tex]

[tex]k=0[/tex]

[tex]f\left(x\right)>0[/tex]

Therefore, the range of the function is:

[tex]\mathrm{Range\:of\:}3^x:\quad \begin{bmatrix}\mathrm{Solution:}\:&\:f\left(x\right)>0\:\\ \:\mathrm{Interval\:Notation:}&\:\left(0,\:\infty \:\right)\end{bmatrix}[/tex]

Please also check the attached graph.

Ver imagen absor201