Factor:


49m12−16


(7m6 – 4)


(7m6 – 8)


(7m6 + 4)(7m6 – 4)


(7m6 + 8)(7m6 – 8)



Factor:


49a2b16−1


(7ab8 + 1)


(7ab4 + 1)(7ab4 – 1)


(7ab8 + 1)(7ab8 – 1)


(7ab8 – 1)





Nicole is factoring 0.49t18 – 25 by using the rule a2 – b2 = (a + b)(a – b).


What will she use for the value of a?


0.07t9


0.7t9


0.49


0.7


BRAINLIEST REWARD

Factor49m1216 7m6 4 7m6 8 7m6 47m6 4 7m6 87m6 8Factor49a2b161 7ab8 1 7ab4 17ab4 1 7ab8 17ab8 1 7ab8 1Nicole is factoring 049t18 25 by using the rule a2 b2 a ba class=
Factor49m1216 7m6 4 7m6 8 7m6 47m6 4 7m6 87m6 8Factor49a2b161 7ab8 1 7ab4 17ab4 1 7ab8 17ab8 1 7ab8 1Nicole is factoring 049t18 25 by using the rule a2 b2 a ba class=
Factor49m1216 7m6 4 7m6 8 7m6 47m6 4 7m6 87m6 8Factor49a2b161 7ab8 1 7ab4 17ab4 1 7ab8 17ab8 1 7ab8 1Nicole is factoring 049t18 25 by using the rule a2 b2 a ba class=
Factor49m1216 7m6 4 7m6 8 7m6 47m6 4 7m6 87m6 8Factor49a2b161 7ab8 1 7ab4 17ab4 1 7ab8 17ab8 1 7ab8 1Nicole is factoring 049t18 25 by using the rule a2 b2 a ba class=
Factor49m1216 7m6 4 7m6 8 7m6 47m6 4 7m6 87m6 8Factor49a2b161 7ab8 1 7ab4 17ab4 1 7ab8 17ab8 1 7ab8 1Nicole is factoring 049t18 25 by using the rule a2 b2 a ba class=

Respuesta :

Answer:

a) [tex](7\cdot m^{6}+4)\cdot (7\cdot m^{6}-4)[/tex]

b) [tex](7\cdot a\cdot b^{8}+1)\cdot (7\cdot a\cdot b^{8}-1)[/tex]

c) [tex]a = 0.7\cdot t^{9}[/tex]

d) There are two possible answers only considering real coefficients:

(i) [tex]16\cdot x^{2}-81 = (4\cdot x +9)\cdot (4\cdot x - 9)[/tex]

(ii) [tex]14\cdot x^{2}-81 =(\sqrt{14}\cdot x+9)\cdot (\sqrt{14}\cdot x - 9)[/tex]

e) [tex](a^{3}+4)\cdot (a^{3}-4)[/tex]

Step-by-step explanation:

Now we proceed to solve each algebraic equation:

a) Factor [tex]49\cdot m^{12}-16[/tex]

This binomial is of the form [tex]a^{2}-b^{2} = (a+b)\cdot (a-b)[/tex]. In this case, we can rewrite and factor the equation below:

[tex]49\cdot m ^{12}-16[/tex]

[tex](7\cdot m^{6})^ 2-4^{2}[/tex]

[tex](7\cdot m^{6}+4)\cdot (7\cdot m^{6}-4)[/tex]

b) Factor [tex]49\cdot a^{2}\cdot b^{16}-1[/tex]

This binomial is of the form [tex]a^{2}-b^{2} = (a+b)\cdot (a-b)[/tex]. In this case, we can rewrite and factor the equation below:

[tex]49\cdot a^{2}\cdot b^{16}-1[/tex]

[tex](7\cdot a\cdot b^{8})^{2}-1^{2}[/tex]

[tex](7\cdot a\cdot b^{8}+1)\cdot (7\cdot a\cdot b^{8}-1)[/tex]

c) Nicole is factoring [tex]0.49\cdot t^{18}-25[/tex] by using the rule [tex]a^{2}-b^{2} = (a+b)\cdot (a-b)[/tex]. What will she use for the value of [tex]a[/tex]?

From this rule we find that [tex]a^{2} = 0.49\cdot t^{18}[/tex], that is:

[tex]a^{2} = 0.49\cdot t^{18}[/tex]

[tex]a^{2} = \frac{49}{100}\cdot t^{18}[/tex]

[tex]a = \frac{7}{10}\cdot t^{9}[/tex]

[tex]a = 0.7\cdot t^{9}[/tex]

d) Which binomial is a difference of squares?

A binomial is a difference of square if and only if [tex]a^{2}-b^{2} = (a+b)\cdot (a-b)[/tex]. There are two possible answers only considering real coefficients:

(i) [tex]16\cdot x^{2}-81 = (4\cdot x +9)\cdot (4\cdot x - 9)[/tex]

(ii) [tex]14\cdot x^{2}-81 =(\sqrt{14}\cdot x+9)\cdot (\sqrt{14}\cdot x - 9)[/tex]

e) Factor [tex]a^{6}-16[/tex]

This binomial is of the form [tex]a^{2}-b^{2} = (a+b)\cdot (a-b)[/tex]. In this case, we can rewrite and factor the equation below:

[tex]a^{6}-16[/tex]

[tex](a^{3})^{2}-4^{2}[/tex]

[tex](a^{3}+4)\cdot (a^{3}-4)[/tex]