Respuesta :
Answer:
The torsion constant for the wire is [tex]2.856\times 10^{-4}\,N\cdot m[/tex].
Explanation:
The angular frequency of the torsional pendulum ([tex]\omega[/tex]), measured in radians per second, is defined by the following expression:
[tex]\omega = \sqrt{\frac{\kappa}{I} }[/tex] (1)
Where:
[tex]\kappa[/tex] - Torsional constant, measured in newton-meters.
[tex]I[/tex] - Moment of inertia, measured in kilogram-square meters.
The angular frequency and the moment of inertia are represented by the following formulas:
[tex]\omega = \frac{2\pi}{T}[/tex] (2)
[tex]I = \frac{m\cdot L^{2}}{12}[/tex] (3)
Where:
[tex]T[/tex] - Period, measured in seconds.
[tex]m[/tex] - Mass of the stick, measured in kilograms.
[tex]L[/tex] - Length of the stick, measured in meters.
By (2) and (3), (1) is now expanded:
[tex]\frac{2\pi}{T} = \sqrt{\frac{12\cdot \kappa}{m\cdot L^{2}} }[/tex]
[tex]\frac{2\pi}{T} = \frac{2}{L}\cdot \sqrt{\frac{3\cdot \kappa}{m} }[/tex]
[tex]\frac{\pi\cdot L}{T} = \sqrt{\frac{3\cdot \kappa}{m} }[/tex]
[tex]\frac{\pi^{2}\cdot L^{2}}{T^{2}} = \frac{3\cdot \kappa}{m}[/tex]
[tex]\kappa = \frac{\pi^{2}\cdot m\cdot L^{2}}{3\cdot T^{2}}[/tex]
If we know that [tex]m = 5\,kg[/tex], [tex]L = 1\,m[/tex] and [tex]T = 240\,s[/tex], then the torsion constant for the wire is:
[tex]\kappa = \frac{\pi^{2}\cdot (5\,kg)\cdot (1\,m)^{2}}{3\cdot (240\,s)^{2}}[/tex]
[tex]\kappa = 2.856\times 10^{-4}\,N\cdot m[/tex]
The torsion constant for the wire is [tex]2.856\times 10^{-4}\,N\cdot m[/tex].