Answer:
[tex]\begin\\\begin{tabular}{|l|l|l|l|l|l|}x&0&1&2&4&Sum\\P(x)&0.33&0.40&0.20&0.07&1.00\end[/tex]
Step-by-step explanation:
From the question we are given the table
[tex]\begin\\\begin{tabular}{|l|l|l|l|l|} &&y \\x &0&1&2&3\\0 &0.13&0.1&0.07&0.03 \\1&0.12&0.16&0.08&0.04\\ 2&0.02&0.06&0.08&0.04\\ 3&0.01&0.02&0.02&0.02\end[/tex]
Generally the marginal probability mass function of X is mathematically given as
[tex]P(x)=\sum P(x,y)>y[/tex]
[tex]\sum P(0)=0.13+0.1+0.07+0.03=0.33\\\sum P(1)=0.12+0.16+0.08+0.04=0.40\\\sum P(2)=0.02+0.06+0.08+0.04=0.20\\\sum P(3)=0.01+0.02+0.02+0.02=0.07[/tex]
Therefore marginal probability mass function of X
[tex]\begin\\\begin{tabular}{|l|l|l|l|l|l|}x&0&1&2&4&Sum\\P(x)&0.33&0.40&0.20&0.07&1.00\end[/tex]