Answer:
[tex]0.05\ \text{kJ/kg}[/tex]
[tex]3141.6\ \text{kW}[/tex]
Explanation:
v = Velocity of wind = 10 m/s
A = Swept area of blade = [tex]\dfrac{\pi}{4}d^2[/tex]
d = Diameter of turbine = 80 m
[tex]\rho[/tex] = Density of air = [tex]1.25\ \text{kg/m}^3[/tex]
Wind energy per unit mass of air is given by
[tex]E=\dfrac{v^2}{2}\\\Rightarrow E=\dfrac{10^2}{2}\\\Rightarrow E=50\ \text{J/kg}[/tex]
The mechanical energy of air per unit mass is [tex]0.05\ \text{kJ/kg}[/tex]
Power is given by
[tex]P=\rho AvE\\\Rightarrow P=1.25\times \dfrac{\pi}{4}\times 80^2\times 10\times 50\\\Rightarrow P=3141592.65=3141.6\ \text{kW}[/tex]
The power generation potential of the wind turbine is [tex]3141.6\ \text{kW}[/tex].