Respuesta :
Answer:
(2 , 5)
Step-by-step explanation:
point (x,y) that divides the segment PI in the ratio 2 to 1
PD=4 - (-2) = 6 PE/ED=2/1 PE=2ED PE+ED=6 3ED=6 ED=2 PE=4
coordinate of E (2,1) .... 2 is x coordinate of E
DI=7-1=6 DF/FI=2/1 DF=4
coordinate of F (4,5) .... .... 5 is y coordinate of E
CF // PD PC/CI=DF/FI=2/1
C (2,5)

Coordinates of the point intersecting segment PT in the ratio of 2 : 1 will be (2, 5).
Given in the question,
- Segment PT with endpoints P(-2, 1) and T(4, 7).
- Point (h, k) divides the segment in the ratio of 2 : 1.
If the endpoints of a segment PQ have been given as[tex]P(x_1,y_1)[/tex] and [tex]Q(x_2,y_2)[/tex] and a point [tex](h,k)[/tex] divides this segment in the ratio of m : n,
[tex]h=\frac{mx_2+nx_1}{m+n}[/tex]
[tex]k=\frac{my_2+ny_1}{m+n}[/tex]
If the extreme ends of a segment PT are [tex]P(-2,1)[/tex] and [tex]T(4,7)[/tex] and a point (h, k) divides this segment in ratio of 2 : 1,
[tex]h=\frac{2(4)+1(-2)}{2+1}[/tex]
[tex]h=2[/tex]
[tex]k=\frac{2(7)+1(1)}{2+1}[/tex]
[tex]k=5[/tex]
Therefore, coordinates of the point intersecting segment PT in the ratio of 2 : 1 will be (2, 5).
Learn more,
https://brainly.com/question/15244734