WILL GIVE BRAINLIEST IMMEDIATELY!!! INSTANT BRAINLY!! PLS HELP
I ONLY NEED STATEMENT 7's REASON!!!
5. Consider the figure below.


Given: Parallelogram SUPN, SR ⊥ UN and MP ⊥ UN


Prove: ΔPMU ≅ ΔSRN


Complete the two-column proof below.

WILL GIVE BRAINLIEST IMMEDIATELY INSTANT BRAINLY PLS HELPI ONLY NEED STATEMENT 7s REASON5 Consider the figure belowGiven Parallelogram SUPN SR UN and MP UNProve class=

Respuesta :

Answer:

The two column proof is presented as follows;

Statement                   [tex]{}[/tex]                  Reason

1. Parallelogram SUPN [tex]\overline {SR}[/tex]⊥ [tex]\overline {UN}[/tex] [tex]{}[/tex]   1. Given

and [tex]\overline {MP}[/tex]⊥ [tex]\overline {UN}[/tex]

2. ∠SRU = ∠PMN = 90°   [tex]{}[/tex]                 2. Definition of perpendicular lines

3. ∠SRU ≅ ∠PMN            [tex]{}[/tex]                 2. Definition of congruency

4. [tex]\overline {UP}[/tex] ║ [tex]\overline {SN}[/tex]                      [tex]{}[/tex]                4. Opposite sides of a parallelogram are                                            [tex]{}[/tex]                                                               congruent

5. ∠SNR ≅ ∠PUM             [tex]{}[/tex]               5. Alternate interior angles are congruent

6. [tex]\overline {UP}[/tex] ≅ [tex]\overline {SN}[/tex]                      [tex]{}[/tex]               6. Opposite sides of a parallelogram are                                            [tex]{}[/tex]                                                              congruent

7. ΔPMU ≅ ΔSRN                 [tex]{}[/tex]           7. By AAS rule of congruency

By the Angle-Angle-Side (AAS) rule of congruency, we have that, if two angles and a corresponding adjacent side (∠SRU ≅ ∠PMN, ∠SNR ≅ ∠PUM, [tex]\overline {UP}[/tex] ≅ [tex]\overline {SN}[/tex])  of two triangles (ΔPMU and ΔSRN) are congruent, then the the two triangles are also congruent (ΔPMU ≅ ΔSRN)

Step-by-step explanation: