The ratio of the measures of the three angles in a tangle 3107. Find the measures of the angles and write them in size order,
largest:
middle

Respuesta :

Answer:

27, 90 and 63

Step-by-step explanation:

Given

Ratio of triangle sides

[tex]Ratio = 3 : 10 : 7[/tex]

Required:

The length of each side

Triangles in a triangle add up to 180.

The side with ratio 3 is:

[tex]S_1 = \frac{3}{3 + 10 + 7} *180[/tex]

[tex]S_1 = \frac{3 *180}{20}[/tex]

[tex]S_1 = \frac{540}{20}[/tex]

[tex]S_1 = 27[/tex]

The side with ratio 10 is:

[tex]S_2 = \frac{10}{3 + 10 + 7} *180[/tex]

[tex]S_2 = \frac{10 *180}{20}[/tex]

[tex]S_2 = \frac{1800}{20}[/tex]

[tex]S_2 = 90[/tex]

Lastly:

The side with 7 as its ratio

[tex]S_3 = \frac{7}{3 + 10 + 7} *180[/tex]

[tex]S_3 = \frac{7 *180}{20}[/tex]

[tex]S_3 = \frac{1260}{20}[/tex]

[tex]S_3 = 63[/tex]

Hence, the angles are: 27, 90 and 63