A-10A twin-jet close-support airplane is approximately rectangular with a wingspan (the length perpendicular to the flow direction) of 17.5 m and a chord (the length parallel to the flow direction) of 3 m. The airplane is flying at standard sea level with a velocity of 200 m/s. If the flow is considered to be completely laminar, calculate the boundary layer thickness at the trailing edge and the total skin friction drag. Assume that the wing is approximated by a flat plate. Assume incompressible flow.

Respuesta :

Solution :

Given :

Rectangular wingspan

Length,L = 17.5 m

Chord, c = 3 m

Free stream velocity of flow, [tex]$V_{\infty}$[/tex] = 200 m/s

Given that the flow is laminar.

[tex]$Re_L=\frac{\rho V L}{\mu _{\infty}}$[/tex]

      [tex]$=\frac{1.225 \times 200 \times 3}{1.789 \times 10^{-5}}$[/tex]

    [tex]$= 4.10 \times 10^7$[/tex]

So boundary layer thickness,

[tex]$\delta_{L} = \frac{5.2 L}{\sqrt{Re_L}}$[/tex]

[tex]$\delta_{L} = \frac{5.2 \times 3}{\sqrt{4.1 \times 10^7}}$[/tex]

    = 0.0024 m

The dynamic pressure, [tex]$q_{\infty} =\frac{1}{2} \rho V^2_{\infty}$[/tex]

                                           [tex]$ =\frac{1}{2} \times 1.225 \times 200^2$[/tex]

                                          [tex]$=2.45 \times 10^4 \ N/m^2$[/tex]

The skin friction drag co-efficient is given by

[tex]$C_f = \frac{1.328}{\sqrt{Re_L}}$[/tex]

     [tex]$=\frac{1.328}{\sqrt{4.1 \times 10^7}}$[/tex]

     = 0.00021

[tex]$D_{skinfriction} = \frac{1}{2} \rho V^2_{\infty}S C_f$[/tex]

                  [tex]$=\frac{1}{2} \times 1.225 \times 200^2 \times 17.5 \times 3 \times 0.00021$[/tex]

                  = 270 N

Therefore the net drag = 270 x 2

                                      = 540 N