Respuesta :
Answer:
The answer is "83.1%".
Explanation:
Given:
[tex]\text{Mass of the earth}\ (M_E) = 5.97 \times 10^{24}\ \ kg\\\\\text{Radius of the earth}\ (R_E) = 6380 \ km = 6.38 \times 10^{6}\ \ m\\\\\text{acceleration of gravity}\ (g_E) = 608 \ \ km= 608,000 \ \ m \\\\G= 6.67 \times 10^{-11} \ \ \frac{N \cdot n^2}{kg^2}[/tex]
Using formula:
[tex]\to g_E = G \frac{M_E}{(R_E +h)^2}[/tex]
[tex]\to g_{608 \ km}=6.67\times10^{-11}\frac{5.97 \times 10^{24}}{(6.38 \times 10^{6}+ 608,000)^2}\\\\\to g_{608 \ km}=6.67\times10^{-11}\frac{5.97 \times 10^{24}}{(6,380,000+ 608,000)^2}\\\\\to g_{608 \ km} =6.67\times10^{-11}\frac{5.97 \times 10^{24}}{(6,380,000+ 608,000)^2}\\\\\to g_{608 \ km}=6.67\times10^{-11}\frac{5.97 \times 10^{24}}{(6,988,000)^2}\\\\\to g_{608 \ km}=6.67\times10^{-11}\frac{5.97 \times 10^{24}}{4.88 \times 10^{13}}\\\\[/tex]
[tex]\to g_{608 \ km}=6.67\times10^{-24}\frac{5.97 \times 10^{24}}{4.88}\\\\\to g_{608 \ km}=6.67\times \frac{5.97}{4.88}\\\\\to g_{608 \ km}=6.67\times 1.22336066\\\\\to g_{608 \ km}= 8.15 \ \frac{m}{s^2}[/tex]
Calculating the gravity on the Earth’s surface:
[tex]\to \frac{g_{608 \ km} }{ g_{\ earth \ surface}}[/tex] [tex]= \frac{8.15}{9.8} \times 100=83.1 \%[/tex]