Respuesta :
Answer:
[tex]P(First\ White\ and\ Second\ Blue) = \frac{3}{28}[/tex]
[tex]P(Same) = \frac{67}{210}[/tex]
Step-by-step explanation:
Given (Omitted from the question)
[tex]Red = 7[/tex]
[tex]White = 9[/tex]
[tex]Blue = 5[/tex]
Solving (a): [tex]P(First\ White\ and\ Second\ Blue)[/tex]
This is calculated using:
[tex]P(First\ White\ and\ Second\ Blue) = P(White) * P(Blue)[/tex]
[tex]P(First\ White\ and\ Second\ Blue) = \frac{n(White)}{Total} * \frac{n(Blue)}{Total - 1}[/tex]
We used Total - 1 because it is a probability without replacement
So, we have:
[tex]P(First\ White\ and\ Second\ Blue) = \frac{9}{21} * \frac{5}{21 - 1}[/tex]
[tex]P(First\ White\ and\ Second\ Blue) = \frac{9}{21} * \frac{5}{20}[/tex]
[tex]P(First\ White\ and\ Second\ Blue) = \frac{9*5}{21*20}[/tex]
[tex]P(First\ White\ and\ Second\ Blue) = \frac{45}{420}[/tex]
[tex]P(First\ White\ and\ Second\ Blue) = \frac{3}{28}[/tex]
Solving (b) [tex]P(Same)[/tex]
This is calculated as:
[tex]P(Same) = P(First\ Blue\ and Second\ Blue)\[/tex][tex]or\ P(First\ Red\ and Second\ Red)\ or\ P(First\ White\ and Second\ White)[/tex]
[tex]P(Same) = (\frac{n(Blue)}{Total} * \frac{n(Blue)-1}{Total-1})+(\frac{n(Red)}{Total} * \frac{n(Red)-1}{Total-1})+(\frac{n(White)}{Total} * \frac{n(White)-1}{Total-1})[/tex]
[tex]P(Same) = (\frac{5}{21} * \frac{4}{20})+(\frac{7}{21} * \frac{6}{20})+(\frac{9}{21} * \frac{8}{20})[/tex]
[tex]P(Same) = \frac{20}{420}+\frac{42}{420} +\frac{72}{420}[/tex]
[tex]P(Same) = \frac{20+42+72}{420}[/tex]
[tex]P(Same) = \frac{134}{420}[/tex]
[tex]P(Same) = \frac{67}{210}[/tex]