Answer:
[tex]<-0.5, 1.5, -3.5>\ \text{m/s}[/tex]
Explanation:
[tex]u_1[/tex] = Velocity of one lump = [tex]3x+3y-3z[/tex]
[tex]u_2[/tex] = Velocity of the other lump = [tex]-4x+0y-4z[/tex]
m = Mass of each lump = [tex]30\ \text{g}[/tex]
The collision is perfectly inelastic as the lumps stick to each other so we have the relation
[tex]mu_1+mu_2=(m+m)v\\\Rightarrow m(u_1+u_2)=2mv\\\Rightarrow v=\dfrac{u_1+u_2}{2}\\\Rightarrow v=\dfrac{3x+3y-3z-4x+0y-4z}{2}\\\Rightarrow v=-0.5x+1.5y-3.5z=<-0.5, 1.5, -3.5>\ \text{m/s}[/tex]
The velocity of the stuck-together lump just after the collision is [tex]<-0.5, 1.5, -3.5>\ \text{m/s}[/tex].