Respuesta :

Answer:

The length of the sides are 64 cm, 96 cm and 120 cm.

Step-by-step explanation:

Perimeter of a triangle:

The perimeter of a triangle is the sum of it's sides.

A triangle has a perimeter of 280 cm, and its side lengths are a, b and c respectively.

This means that:

[tex]a + b + c = 280[/tex]

a:b= 2:3

This means that:

[tex]\frac{a}{b} = \frac{2}{3}[/tex]

[tex]2b = 3a[/tex]

[tex]b = \frac{3a}{2}[/tex]

b:c=4:5

This means that:

[tex]\frac{b}{c} = \frac{4}{5}[/tex]

[tex]4c = 5b[/tex]

[tex]c = \frac{5b}{4}[/tex]

[tex]c = \frac{5*3*a}{4*2} = \frac{15a}{8}[/tex]

At the original equation:

We replace b and c in function of a. So

[tex]a + b + c = 280[/tex]

[tex]a + \frac{3a}{2} + \frac{15a}{8} = 280[/tex]

Multiplying everything by 8

[tex]8a + 12a + 15a = 280*8[/tex]

[tex]35a = 280*8[/tex]

[tex]a = \frac{280*8}{35}[/tex]

[tex]a = 64[/tex]

Sides b and c:

Since we have a, we can find sides b and c:

[tex]b = \frac{3a}{2} = \frac{3*64}{2} = 3*32 = 96[/tex]

[tex]c = \frac{15a}{8} = \frac{15*64}{8} = 15*8 = 120[/tex]

The length of the sides are 64 cm, 96 cm and 120 cm.