Answer: The balance when Emma turns 18 = $ 48,132.38
Step-by-step explanation:
When interest is compounded quarterly, the accumulated amount after t years will be :
[tex]A= P(1+r)^t[/tex]
, where P = principal, r= rate of interest( in decimal)
Given: P= $ 20,000 , r= 5% =0.05
t = 18 years
[tex]A = 20000(1+0.05)^{18}\\\\= 20000(1.05)^{18}\\\\= 20000(2.406619)\\\\=\$\ 48,132.38[/tex]
The balance when Emma turns 18 = $ 48,132.38