A point​ P(x,y) is shown on the unit circle corresponding to a real number t. Find the values of the trigonometric functions at t. The point P is (√10/10 , -3√10/10)
sin t=
cos t=
tan t=
csc t=
sec t=
cot t=

A point Pxy is shown on the unit circle corresponding to a real number t Find the values of the trigonometric functions at t The point P is 1010 31010 sin t cos class=

Respuesta :

DWRead

Answer:

Step-by-step explanation:

sin(t) = -3√10/10

cos(t) = √10/10

tan(t) = sin(t)/cos(t) = -3

csc(t) = 1/sin(t) = -√10/3

sec(t) = 1/cos(t) = √10

cot(t) = 1/tan(t) = -⅓