Respuesta :

Given:

An exponential function goes through points (0,6) and (5, 6144).

To find:

The exponential function.

Solution:

The general form of an exponential function is

[tex]y=ab^x[/tex]          ...(i)

It goes through points (0,6) and (5, 6144). It means the equation must be satisfied by these two points.

Putting x=0 and y=6, we get

[tex]6=ab^0[/tex]

[tex]6=a[/tex]

Putting a=6, x=5 and y=6144, we get

[tex]6144=6b^5[/tex]

[tex]\dfrac{6144}{6}=b^5[/tex]

[tex]1024=b^5[/tex]

Taking 5th root on both sides, we get

[tex]\sqrt[5]{1024}=b[/tex]

[tex]4=b[/tex]

Putting a=6 and b=4, we get

[tex]y=6(4)^x[/tex]

Therefore, the required exponential function is [tex]y=6(4)^x[/tex].