Respuesta :
Answer:
12[tex]\sqrt{2}[/tex]
Step-by-step explanation:
Using the rule of radicals
[tex]\sqrt{a}[/tex] × [tex]\sqrt{b}[/tex] ⇔ [tex]\sqrt{ab}[/tex]
Consider each term in the expression
[tex]\frac{14}{\sqrt{2} }[/tex] ( multiply numerator/ denominator by [tex]\sqrt{2}[/tex] to rationalise the denominator )
= [tex]\frac{14}{\sqrt{2} }[/tex] × [tex]\frac{\sqrt{2} }{\sqrt{2} }[/tex] = [tex]\frac{14\sqrt{2} }{2}[/tex] = 7[tex]\sqrt{2}[/tex]
[tex]\sqrt{50}[/tex]
= [tex]\sqrt{25(2)}[/tex]
= [tex]\sqrt{25}[/tex] × [tex]\sqrt{2}[/tex]
= 5[tex]\sqrt{2}[/tex]
Then
[tex]\frac{14}{\sqrt{2} }[/tex] + [tex]\sqrt{50}[/tex]
= 7[tex]\sqrt{2}[/tex] + 5[tex]\sqrt{2}[/tex]
= 12[tex]\sqrt{2}[/tex]
with b = 12