Respuesta :
Answer:
(a)
[tex]\bar x = 0.0075[/tex]
[tex]s = 0.0049[/tex]
(b)
B. The sample is too small to make judgments about skewness or symmetry.
Step-by-step explanation:
Given:
[tex]n = 8[/tex]
[tex]\begin{array}{ccccccccc}{} & {S} & {u} & {b} &{j} & {e} & {c} & {t} & {s} &{Operator} & {1} & {2} & {3} & {4} & {5} & {6} & {7} & {8} & {1} & 1.326 & 1.337 & 1.079 & 1.229 & 0.936 & 1.009 & 1.179 & 1.289 & 2 & 1.323 & 1.322 & 1.073 & 1.233 & 0.934 & 1.019 & 1.184 & 1.304 \ \end{array}[/tex]
Solving (a):
First, calculate the difference between the recorded TBBMC for both operators:
[tex]\begin{array}{ccccccccc}{} & {S} & {u} & {b} &{j} & {e} & {c} & {t} & {s} &{Operator} & {1} & {2} & {3} & {4} & {5} & {6} & {7} & {8} & {1} & 1.326 & 1.337 & 1.079 & 1.229 & 0.936 & 1.009 & 1.179 & 1.289 & 2 & 1.323 & 1.322 & 1.073 & 1.233 & 0.934 & 1.019 & 1.184 & 1.304 &{|1 - 2|} &0.003 & 0.015 & 0.006 & 0.004 & 0.002 & 0.010 & 0.005 & 0.015 \ \end{array}[/tex]
The last row which represents the difference between 1 and 2 is calculated using absolute values. So, no negative entry is recorded.
The mean is then calculated as:
[tex]\bar x = \frac{\sum x}{n}[/tex]
[tex]\bar x = \frac{0.003 + 0.015 + 0.006 + 0.004 + 0.002 + 0.010 + 0.005 + 0.015}{8}[/tex]
[tex]\bar x = \frac{0.06}{8}[/tex]
[tex]\bar x = 0.0075[/tex]
Next, calculate the standard deviation (s).
This is calculated using:
[tex]s = \sqrt{\frac{\sum (x - \bar x)^2}{n}}[/tex]
So, we have
[tex]s = \sqrt\frac{(0.003 - 0.0075)^2 + (0.015 - 0.0075)^2+ (0.006- 0.0075)^2+ ....... + (0.005- 0.0075)^2+ (0.015- 0.0075)^2 }{8}[/tex][tex]s = \sqrt\frac{0.00019}{8}[/tex]
[tex]s = \sqrt{0.00002375[/tex]
[tex]s = 0.0049[/tex]
Solving (b):
Of the given options (A - E), option B is correct because the sample is actually too small