(Bonus) A rectangular tank with a bottom and sides but no top is to have volume 500 cubic feet. Determine the dimensions (length, width, height) with the smallest possible surface area.

Respuesta :

Answer:

Length and Width = 10ft

Height = 5ft

Surface Area = 300 square feet

Step-by-step explanation:

Given

[tex]V = 500ft^3[/tex] -- Volume

Let:

[tex]L = Length[/tex]

[tex]W =Width[/tex]

[tex]H = Height[/tex]

Volume (V) is calculated as:

[tex]V = L * W * H[/tex]

Substitute 500 for V

[tex]500 = L * W * H[/tex]

Make H the subject

[tex]H = \frac{500}{LW}[/tex]

The tank has no top. So, the surface area (S) is:  

[tex]S = L * W + 2*H*L + 2*H*W[/tex]

[tex]S = L * W + 2H(L + W)[/tex]

Substitute 500/LW for H

[tex]S = L * W + 2*\frac{500}{LW}(L + W)[/tex]

[tex]S = L * W + \frac{1000}{LW}(L + W)[/tex]

[tex]S = L W + \frac{1000}{L} + \frac{1000}{W}[/tex]

Differentiate with respect to L and to W

[tex]S'(W) = L - \frac{1000}{W^2}[/tex]

and

[tex]S'(L) = W - \frac{1000}{L^2}[/tex]

Equate both to get the critical value

[tex]S'(W) = L - \frac{1000}{W^2}[/tex]and [tex]S'(L) = W - \frac{1000}{L^2}[/tex]

[tex]0 = L - \frac{1000}{W^2}[/tex] and [tex]0 = W - \frac{1000}{L^2}[/tex]

[tex]\frac{1000}{W^2} = L[/tex] and [tex]\frac{1000}{L^2} = W[/tex]

[tex]W^2L = 1000[/tex] and [tex]L^2W = 1000[/tex]

Make L the subject in  [tex]W^2L = 1000[/tex]

[tex]L = \frac{1000}{W^2}[/tex]

Substitute [tex]\frac{1000}{W^2}[/tex] for L in [tex]L^2W = 1000[/tex]

[tex](\frac{1000}{W^2})^2 * W = 1000[/tex]

[tex]\frac{1000000}{W^4} * W = 1000[/tex]

[tex]\frac{1000000}{W^3} = 1000[/tex]

Cross Multiply

[tex]1000000 = 1000W^3[/tex]

Divide both sides by 1000

[tex]1000 = W^3[/tex]

Take cube roots of both sides

[tex]\sqrt[3]{1000} = W[/tex]

[tex]10 = W[/tex]

[tex]W = 10[/tex]

Substitute 10 for W in [tex]L = \frac{1000}{W^2}[/tex]

[tex]L = \frac{1000}{10^2}[/tex]

[tex]L = \frac{1000}{100}[/tex]

[tex]L = 10[/tex]

Recall that:[tex]H = \frac{500}{LW}[/tex]

[tex]H = \frac{500}{10*10}[/tex]

[tex]H = \frac{500}{100}[/tex]

[tex]H = 5[/tex]

So, the dimensions are:

[tex]L, W=10[/tex] and [tex]H = 5[/tex]

The surface area is:

[tex]S = L * W + 2H(L + W)[/tex]

[tex]S = 10*10 +2*5(10+10)[/tex]

[tex]S = 10*10 +2*5*20[/tex]

[tex]S = 100 + 200[/tex]

[tex]S = 300[/tex]